The Compressibility of Bimolecular Lipid Membranes

W. Carius

Lehrstuhl für Physikalische Chemie I, Universität Regensburg, D-8400 Regensburg

The compressibility of bimolecular lipid membranes (BLM) was studied by the application of hydrostatic pressure (p=1...5 bar) on the hole membrane cell. Under special precautions BLM could be made which withstand alternating pressure without bulging. Capacitance measurements were performed with a resolution of $2\cdot 10^{-5}$ in Δ C/C. The alternating capacitance change in phase with the alternating pressure gives an estimate for the compressibility of the BLM. For membranes made from dioleoyl-lecithin/n-decane the result is

$$\frac{\Delta C}{C \cdot \Delta D} = 1.65 \cdot 10^{-4} \text{ bar}^{-1} \qquad \text{at } 20^{\circ} \text{ C}$$

Considering the changes in thickness and polarizability the theory gives

$$\frac{\Delta C}{C \cdot \Delta p} = (1 + (\epsilon + 2)(\epsilon - 1)/(3\epsilon)) \cdot \kappa$$
$$= 1.81 \cdot \kappa \qquad \text{for } \epsilon = 2.3 \text{ (dielectric constant)}$$

From the experiment follows then $\kappa = 0.91 \cdot 10^{-4} \text{ bar}^{-1}$.

Liu & Kay (1977) reported for the disordered phase of DPL the molar compressibility $0.1~\text{ml}\cdot\text{mol}^{-1}~\text{bar}^{-1}$, which corresponds to $\kappa = 1\cdot 10^{-4}~\text{bar}^{-1}$. It can also be compared with the compressibility of n-octane $\kappa = 1.2\cdot 10^{-4}~\text{bar}^{-1}$ at 23° C.

1. Liu, N. and Kay, R.L. (1977) Biochemistry $\underline{16}$, 3484